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As Morfeld noted in his letter, adjustment 
for the healthy worker survivor effect is 
complex. We do not claim that adjustment 
using employment duration completely 
adjusts for a healthy worker survivor effect, 
but our results provided evidence that it 
is present in this cohort and should be 
addressed.
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DNA Damage after Continuous 
Irradiation: Findings in Mice 
Compared with Human 
Epidemiologic Data
http://dx.doi.org/10.1289/ehp.1205564
Olipitz et  al. (2012) suggested that their 
study of biomarkers in several hundred mice 
exposed to 10.5 cGy of ionizing radiation for 
5 weeks casts into doubt radiation standards 
and concerns about protracted exposure after 
accidental releases of radioactivity. Yet, the 
authors failed to discuss the many human 
studies that have appeared in recent years 

showing excess cancers after protracted expo-
sure (e.g., Cardis et al. 2005; Krestinina et al. 
2007; Muirhead et al. 2009). The most likely 
explanation for the contradiction is that the 
biomarkers they examined are not predic-
tive of cancer incidence 10–50 years after 
exposure, a possibility they did not mention. 
Before a cellular biomarker can be trusted to 
predict cancer risk, it first must be linked to 
epidemiologic data, something that Olipitz 
et al. have not done. 

If Olipitz et al. (2012) interpreted their 
biomarker results correctly, then recent 
studies on humans must have been wrong. 
For example, in a study of 400,000 nuclear 
workers, Cardis et al. (2005) reported excess 
cancer from protracted exposure at a rate 
per Gray higher than that found in studies 
of one-time exposures in atomic bomb 
(A‑bomb) survivors. In a study of 175,000 
radiation workers receiving protracted 
exposures in the United Kingdom, Muirhead 
et al. (2009) observed excess cancer at the 
same rate as found in A‑bomb survivors. 
Krestinina et al. (2007) found excess cancer 
in 17,000 members of the civilian popula
tion who received protracted exposure 
from emissions from the Soviet weapons 
complex—also at a higher rate than found in 
the A-bomb cohort. In addition, Chernobyl 
thyroid exposures meet the protracted test 
because >  90% of the dose came from 
iodine‑131, which has an 8‑day half-life 
(Gavrilin et al. 2004). It would have been 
helpful if Olipitz et al. (2012) had explicitly 
mentioned these epidemiologic contradictions 
to their data interpretation, thus allowing the 
reader to judge whether or not their mouse 
data should influence worker and public 
radiation standards for protracted exposures.

In the past, cellular radiation studies have 
conflicted with human epidemiologic data. 
Thus, the study by Olipitz et al. (2012) is 
not a test of the linear nonthreshold theory 
(LNT). The authors started with a dose 
almost universally accepted to cause a (small) 
risk of cancer if given all at once. 

Perhaps Olipitz et  al. (2012) would 
argue that the dose categories covered in 
the epidemiology studies cited above do 
not really include protracted exposures to 
10.5‑cGy doses, but only to doses no lower 
than 20 or 30 cGy. However, Olipitz et al. 
claimed to see “nothing” after 5 weeks, so 
the implication is that they would also see 
nothing after 10–15 weeks. If they thought 
otherwise, it would have been appropriate 
to say so. In addition, epidemiologic studies 
in regions with high natural background are 
not definitive. In one such study, Nair et al. 
(2009) concluded that their study in India, 
together with cancer mortality studies in 
China, could only set limits, suggesting that 
“it is unlikely that estimates of risk at low 

doses are substantially greater than currently 
believed.” 

One of the biggest paradoxes in the 
debate on low-level radiation—whether about 
immediate or protracted exposure—is that an 
individual risk can be a minor concern, while 
the societal risk (the total delayed cancers in an 
exposed population) can be of major concern. 
Attempts to calm public overreaction should 
not ignore the human epidemiologic data. 
Further discussion of these controversies and 
their policy implications have been published 
previously (Beyea 2012). 
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We thank Beyea for his comments and would 
like to respond, in particular, regarding the 
works he cites in his letter. First, the results of 
our study are, in fact, consistent with the find-
ings of many human epidemiologic studies. 
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